2,344 research outputs found

    A systematic review of randomised controlled trials on the effectiveness of exercise programs on lumbo pelvic pain among postnatal women

    Get PDF
    Background: A substantial number of women tend to be affected by Lumbo Pelvic Pain (LPP) following child birth. Physical exercise is indicated as a beneficial method to relieve LPP, but individual studies appear to suggest mixed findings about its effectiveness. This systematic review aimed to synthesise evidence from randomised controlled trials on the effectiveness of exercise on LPP among postnatal women to inform policy, practice and future research. Methods: A systematic review was conducted of all randomised controlled trials published between January 1990 and July 2014, identified through a comprehensive search of following databases: PubMed, PEDro, Embase, Cinahl, Medline, SPORTDiscus, Cochrane Pregnancy and Childbirth Group’s Trials Register, and electronic libraries of authors’institutions. Randomised controlled trials were eligible for inclusion if the intervention comprised of postnatal exercise for women with LPP onset during pregnancy or within 3 months after delivery and the outcome measures included changes in LPP. Selected articles were assessed using the PEDro Scale for methodological quality and findings were synthesised narratively as meta-analysis was found to be inappropriate due to heterogeneity among included studies. Results: Four randomised controlled trials were included, involving 251 postnatal women. Three trials were rated as of ‘good’ methodological quality. All trials, except one, were at low risk of bias. The trials included physical exercise programs with varying components, differing modes of delivery, follow up times and outcome measures. Intervention in one trial, involving physical therapy with specific stabilising exercises, proved to be effective in reducing LPP intensity. An improvement in gluteal pain on the right side was reported in another trial and a significant difference in pain frequency in another. Conclusion: Our review indicates that only few randomised controlled trials have evaluated the effectiveness of exercise on LPP among postnatal women. There is also a great amount of variability across existing trials in the components of exercise programs, modes of delivery, follow up times and outcome measures. While there is some evidence to indicate the effectiveness of exercise for relieving LPP, further good quality trials are needed to ascertain the most effective elements of postnatal exercise programs suited for LPP treatment

    Amyloid-β, p-tau, and reactive microglia load are correlates of MRI cortical atrophy in Alzheimer's disease

    Get PDF
    INTRODUCTION: The aim of this study was to identify the histopathological correlates of MRI cortical atrophy in (a)typical Alzheimer’s disease (AD) donors. METHODS: 19 AD and 10 control donors underwent post-mortem in-situ 3T-3DT1-MRI, from which cortical thickness was calculated. Upon subsequent autopsy, 21 cortical brain regions were selected and immunostained for amyloid-beta, phosphorylated-tau, and reactive microglia. MRI-pathology associations were assessed using linear mixed models. Post-mortem MRI was compared to ante-mortem MRI when available. RESULTS: Higher amyloid-beta load weakly correlated with a higher cortical thickness globally. Phosphorylated-tau strongly correlated with cortical atrophy in temporo-frontal regions. Reactive microglia load strongly correlated with cortical atrophy in the parietal region. Post-mortem scans showed high concordance with ante-mortem scans acquired <1 year before death. DISCUSSION: Distinct histopathological markers differently correlate with cortical atrophy, highlighting their different roles in the neurodegenerative process. This study contributes in understanding the pathological underpinnings of MRI atrophy patterns

    Physiology and cell biology of acupuncture observed in calcium signaling activated by acoustic shear wave

    Get PDF
    This article presents a novel model of acupuncture physiology based on cellular calcium activation by an acoustic shear wave (ASW) generated by the mechanical movement of the needle. An acupuncture needle was driven by a piezoelectric transducer at 100 Hz or below, and the ASW in human calf was imaged by magnetic resonance elastography. At the cell level, the ASW activated intracellular Ca 2+ transients and oscillations in fibroblasts and endothelial, ventricular myocytes and neuronal PC-12 cells along with frequency-amplitude tuning and memory capabilities. Monitoring in vivo mammalian experiments with ASW, enhancement of endorphin in blood plasma and blocking by Gd 3+ were observed; and increased Ca 2+ fluorescence in mouse hind leg muscle was imaged by two-photon microscopy. In contrast with traditional acupuncture models, the signal source is derived from the total acoustic energy. ASW signaling makes use of the anisotropy of elasticity of tissues as its waveguides for transmission and that cell activation is not based on the nervous system. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Effectiveness of early intervention programs for parents of preterm infants: a meta-review of systematic reviews

    Get PDF
    Background: Various intervention programs exist for parents of preterm babies and some systematic reviews (SRs) have synthesised the evidence of their effectiveness. These reviews are, however, limited to specific interventions, components, or outcomes, and a comprehensive evidence base is lacking. The aim of this meta-review was to appraise and meta-synthesise the evidence from existing SRs to provide a comprehensive evidence base on the effectiveness of interventions for parents of preterm infants on parental and infant outcomes. Methods: We conducted a comprehensive search of the following databases to identify relevant SRs: Cochrane library, Web of science, EMBASE, CINAHL, British Nursing Index, PsycINFO, Medline, ScienceDirect, Scopus, IBSS, DOAJ, ERIC, EPPI-Centre, PROSPERO, WHO Library. Additional searches were conducted using authors’ institutional libraries, Google Scholar, and the reference lists of identified reviews. Identified articles were screened in two stages against an inclusion criteria with titles and abstracts screened first followed by full-text screening. Selected SRs were appraised using the AMSTAR tool. Extracted data using a predesigned tool were synthesised narratively examining the direction of impact on outcomes. Results: We found 11 SRs eligible for inclusion that synthesised a total of 343 quantitative primary studies. The average quality of the SRs was ‘medium’. Thirty four interventions were reported across the SRs with considerable heterogeneity in the structural framework and the targeted outcomes that included maternal-infant dyadic, maternal/parental, and infant outcomes. Among all interventions, Kangaroo Care (KC) showed the most frequent positive impact across outcomes (n = 19) followed by Mother Infant Transaction Program (MITP) (n = 14). Other interventions with most consistent positive impact on infant outcomes were Modified-Mother Infant Transaction Program (M-MITP) (n = 6), Infant Health and Development Program (IHDP) (n = 5) and Creating Opportunities for Parent Empowerment (COPE) (n = 5). Overall, interventions with both home and facility based components showed the most frequent positive impact across outcomes. Conclusions: Neonatal care policy and planning for preterm babies should consider the implementation of interventions with most positive impact on outcomes. The heterogeneity in interventions and outcomes calls for the development and implementation of an integrated program for parents of preterm infants with a clearly defined global set of parental and infant outcomes

    Genetic association of CDC2 with cerebrospinal fluid tau in Alzheimer's disease

    Get PDF
    We have recently reported that a polymorphism in the cell division cycle (CDC2) gene, designated Ex6 + 7I/D, is associated with Alzheimer's disease (AD). The CDC2 gene is located on chromosome 10q21.1 close to the marker D10S1225 linked to AD. Active cdc2 accumulates in neurons containing neurofibrillary tangles (NFT), a process that can precede the formation of NFT. Therefore, CDC2 is a promising candidate susceptibility gene for AD. We investigated the possible effects of the CDC2 polymorphism on cerebrospinal fluid (CSF) biomarkers in AD patients. CDC2 genotypes were evaluated in relation to CSF protein levels of total tau, phospho-tau and beta-amyloid (1-42) in AD patients and control individuals, and in relation to the amount of senile plaques and NFT in the frontal cortex and in the hippocampus in patients with autopsy-proven AD and controls. The CDC2 Ex6 + 7I allele was associated with a gene dose-dependent increase of CSF total tau levels (F-2,F- 626 = 7.0, p = 0.001) and the homozygous CDC2Ex6 +7II genotype was significantly more frequent among AD patients compared to controls (p = 0.006, OR = 1.57, 95% CI 1.13-2.17). Our results provide further evidence for an involvement of cdc2 in the pathogenesis of AD. Copyright (C) 2005 S. Karger AG, Basel

    Improving the Alignment Quality of Consistency Based Aligners with an Evaluation Function Using Synonymous Protein Words

    Get PDF
    Most sequence alignment tools can successfully align protein sequences with higher levels of sequence identity. The accuracy of corresponding structure alignment, however, decreases rapidly when considering distantly related sequences (<20% identity). In this range of identity, alignments optimized so as to maximize sequence similarity are often inaccurate from a structural point of view. Over the last two decades, most multiple protein aligners have been optimized for their capacity to reproduce structure-based alignments while using sequence information. Methods currently available differ essentially in the similarity measurement between aligned residues using substitution matrices, Fourier transform, sophisticated profile-profile functions, or consistency-based approaches, more recently

    The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.

    Get PDF
    p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate

    Incorporating background frequency improves entropy-based residue conservation measures

    Get PDF
    BACKGROUND: Several entropy-based methods have been developed for scoring sequence conservation in protein multiple sequence alignments. High scoring amino acid positions may correlate with structurally or functionally important residues. However, amino acid background frequencies are usually not taken into account in these entropy-based scoring schemes. RESULTS: We demonstrate that using a relative entropy measure that incorporates amino acid background frequency results in improved performance in identifying functional sites from protein multiple sequence alignments. CONCLUSION: Our results suggest that the application of appropriate background frequency information may lead to more biologically relevant results in many areas of bioinformatics

    Control of Neural Stem Cell Survival by Electroactive Polymer Substrates

    Get PDF
    Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy), a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs). NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS), tosylate (TsO), perchlorate (ClO4) and chloride (Cl), showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS) but low on PPy containing TsO, ClO4 and Cl. On PPy(DBS), NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS) created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS) films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs

    Molecular Dynamics Simulations of the Roller Nanoimprint Process: Adhesion and Other Mechanical Characteristics

    Get PDF
    Molecular dynamics simulations using tight-binding many body potential are carried out to study the roller imprint process of a gold single crystal. The effect of the roller tooth’s taper angle, imprint depth, imprint temperature, and imprint direction on the imprint force, adhesion, stress distribution, and strain are investigated. A two-stage roller imprint process was obtained from an imprint force curve. The two-stage imprint process included the imprint forming with a rapid increase of imprint force and the unloading stage combined with the adhesion stage. The results show that the imprint force and adhesion rapidly increase with decreasing taper angle and increasing imprint depth. The magnitude of the maximum imprint force and the time at which this maximum occurs are proportional to the imprint depth, but independent of the taper angle. In a comparison of the imprint mechanisms with a vertical imprint case, while high stress and strain regions are concentrated below the mold for vertical imprint, they also occur around the mold in the case of roller imprint. The regions were only concentrated on the substrate atoms underneath the mold in vertical imprint. Plastic flow increased with increasing imprint temperature
    corecore